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Abstract. The correlations among elements that break in random fuse network fracture are studied, with
disorder strong enough to allow for volume damage before final failure. The growth of microfractures is
found to be uncorrelated above a lengthscale, that increases as the final breakdown approaches. Since
the fuse network strength decreases with sample size, asymptotically the process resembles more and
more mean-field-like (“democratic fiber bundle”) fracture. This is found from the microscopic dynamics of
avalanches or microfractures, from a study of damage localization via entropy, and from the final damage
profile. In particular, the last one is statistically constant, except exactly at the final crack zone, in spite
of the fact that the fracture surfaces are self-affine. This also implies that the correlations in damage are
not extensive.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks – 62.20.Fe Deformation and plasticity (including
yield, ductility, and superplasticity) – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 81.40.Np Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure

1 Introduction

The scaling properties of fracture processes continue to at-
tract interest from the statistical mechanics community.
Key quantities are the geometric properties of fracture
surfaces and statistics of acoustic emission, or, in anal-
ogy to other systems, “crackling noise”. The point is that
in failure of brittle materials the elastic energy of a sam-
ple is released in bursts. These “avalanches” often turn
out to have scale-invariant statistics with respect to e.g.
the probability distribution of the released energy [1–5].
Likewise, crack surfaces are often self-affine (with an em-
pirical roughness exponent ζ) [6–8]. The understanding of
the origins of such critical-like statistics would perhaps be
of interest to engineers (“how to make tougher materials”)
but would also mean the solution of a very complicated
many-particle system.

In this respect, among the simplest models that
are available are mean-field like fiber bundle models
(FBM) [9,10] and random fuse networks (RFN’s) [11,12].
The former describe democratic or global load sharing,
and thus do not have anything close to the stress enhance-
ments of real cracks (though one can introduce local load
sharing to fiber bundles, and interpolate between these
two limits as well). Such stress effects are to be found in
a natural way in fuse networks that simplify real elastic-
ity by considering the electrostatic analogy. RFN’s have
two fundamental limits: weak disorder, when cracks are
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nucleated quickly and brittle failure takes place without
much precursor activity, and strong disorder (without in-
finitely strong elements), where damage develops before
macroscopic failure [11,13].

The above mentioned two signatures are found in
the latter, RFN, case, that also characterize experimen-
tal systems: rough, self-affine cracks and microcracking
that corresponds to the acoustic emission. The rough-
ness exponent is in the proximity of ζRFN ∼ 0.7 . . . 0.75,
in 2d, tantalizingly close to the minimum energy sur-
face exponent, exactly 2/3. This result holds also
for e.g. ‘weak’ disorder [14–16] and is close to what
is seen in experiments [17–20]. The damage develops
in avalanches [10,5,21,22], in analogy to democratic
FBM’s [23], or what we in the following call the “mean-
field limit” (MF-). In the FBM case one would have for
the probability distribution of the number of fuses (∆)
blown in one ‘event’, for current-control,

P (∆) ∼ ∆−5/2. (1)

The corresponding AE energy exponent seems to be about
β = 1.7 [5,24,22], as would be expected based on the expo-
nent relation β = (5/2 + 1)/2 [24]. Note however that the
RFN exponent is not exactly 5/2 but slightly higher and
thus the theoretical situation remains partly open [22].
However, even for strong disorder finally stress enhance-
ments come into play, and the sample fails catastrophi-
cally, with the elastic modulus (conductivity, in the RFN
case) having a first-order drop.
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Fig. 1. Snapshots of subsequent damage patters in a failure of
a RFN (each sub-plot having the same number of failed fuses,
separately). R = 1, “strong disorder”, L = 60.

The purpose of this article is to investigate the devel-
opment of the damage, between the MF-limit valid at the
very initial stages of fracture and the final critical crack
growth. Figure 1 shows an example of the transition. We
use for the failure thresholds of the fuses, ic, a flat distri-
bution P (ic) = [1−R, 1+R], with the disorder parameter
R chosen as unity. The subplots depict the individual fuses
that fail in subsequent parts of a stress-strain- (or current-
voltage) history. Clearly, initially the damage is random
(unless proven differently by more sophisticated analysis),
and in the last panel it concentrates on the vicinity and
at the final crack.

In this respect, it is an important question how the pre-
critical damage reflects the self-affine properties of the fi-
nal fracture surface. Recently, Hansen and co-workers have
attempted to relate its formation to a self-consistently de-
veloped damage profile that extends over all the sam-
ple [25,26]. The scaling of the profile with the system
size would then explain the roughness and its exponent.
Clearly, this should also be visible in the dynamics of fail-
ure also prior to the end of the process. Another analogy is
given by dynamics in dipolar random field magnets, which
can account for the symmetry breaking (as signaled by the
formation of the final crack) due to shielding in the direc-
tion of the external voltage and for stress enhancements
that drive cracks mostly perpendicular to it [27].

We study these aspects by concentrating on two kinds
of quantities: those that characterize the spatial distribu-
tion of damage in samples, and those that analyze the
temporal correlations between subsequent, individual fail-
ure events (as e.g. during an avalanche, or series of fuse
failures due to the increase of a control parameter). Sec-
tion 2 considers the former, and uses entropy as the main
tool. This compares the damage integrated over windows
of time and/or space to that in, spatially, completely ran-
dom damage formation. We also study the damage profiles
of completely failed samples. From both kinds of analysis
emerges a picture of crack development, which is mean-
field -like beyond a finite interaction range (i.e. the fail-
ures are randomly distributed). This is true until the final
breakdown is induced, related to as usual to rare event
statistics [12]. This in particular includes the fact that ex-
cept in the “fracture process zone”, i.e. in the vicinity of
the final crack, the damage is statistically homogeneous.
Thus in this particular case of RFN’s the theory proposed
by Hansen et al. seems unlikely to be the explanation for
the self-affine geometry of cracks.

In Section 3, the internal dynamics of avalanches is
considered. We look at the probability distributions and
average values of “jumps” (relative changes in the position
of subsequent failures). It transpires that there is a smooth
development, in which the these quantities exhibit a cross-
over from the FBM/MF-like lack of spatial inhomogeneity
towards localized crack growth within a scale ξ. This re-
sembles some observations by Curtin about critical dam-
age clusters in a more elaborate fiber bundle-type model:
the scaling of strength is based on democratic load shar-
ing in spite of the presence of stress enhancements [28].
It also pertains to the question of the existence of “repre-
sentative volume elements” [29] or coarse-graining in fuse
networks [30], related to the general question of how to
account for microscopic dynamics and phenomena with
coarse-grained variables and equations. Beyond any such
correlation length ξ as may be defined within avalanches
the network looks homogeneous, and this is in particular
true if in addition the damage density is statistically ho-
mogeneous. Finally, we finish the paper in Section 4 with
a summary and some open prospects.

2 Distribution of damage

The RFN’s, as electrical analogues of (quasi-)brittle media
consist of fuses with a linear voltage-current relationship
until a breakdown current ib. A stress-strain test can be
done by using adiabatic fracture iterations: the current
balance is solved, and at each round the most strained
fuse is chosen according to max(ij/jc,j), where ij is the
local current and jc,j the local threshold). Currents and
voltages are solved by the conjugate-gradient method.
The simulations are done in 2d, in the (10) square lat-
tice orientation, with periodic boundary conditions in the
transverse direction (y) and the current flow in the other.
Square systems upto 1002 have been studied; notice that
the damage is in practice volume-like, and thus thousands
of iterations are needed per a single system for L ∼ 100.
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We create series of subsequent fuse failures for each sys-
tem, and extract from these the current- or voltage-driven
cases according to the case at hand (note that this choice
only affects the distribution to avalanches, and the VI-
curve).

Studies of the break-down current Ib as a function af-
firm the expected outcome of a logarithmic scaling [12,16]
as a function of L, resulting from extremal statistics
(Ib ∼ L/ lnL). This implies in the mean-field limit that
nb ∼ L2

log L , where nb is the average number of broken fuses
in a system.

To analyze the spatial of distribution of damage it is
useful first to take note of the fact that in the latter stages
the system behaves anisotropically: just before the forma-
tion of a critical crack the spatial density of the broken
fuses should be a stochastic variable, with a constant mean
in the transverse direction to the external voltage. How-
ever, along the voltage direction differences may ensue. To
study such trends in the damage mechanics and the local-
ization we consider the entropy of the damage averaged
over y in each sample (this is in analogy to the proce-
dure used with AE experiments, of Guarino et al. [3]).
The network is divided along the current flow direction
into sections, and the entropy S defined as

S = −
∑

i

qi ln qi, (2)

where qi is the fraction of burned fuses in section i. S is
normalized by Se, the entropy of a random, on the av-
erage homogeneous distribution of failures (of equal total
damage). Thus the extreme limits are zero and unity, cor-
responding to completely localized damage and complete
random one, respectively. The final crack extends between
y = 0 and y = L, and a sensible choice is to use for the
section width δx a value larger than the typical interface
width w,

w = 〈(hy − h̄)2〉1/2, (3)

where hy denotes the crack location and h̄ its mean posi-
tion in the x-direction. Since w ∼ Lζ , with ζ < 1, it is clear
that using a constant number of sections will with increas-
ing L localize the fracture zone either entirely inside one,
or between two neighboring ones. For better statistics it
is preferable to have δx � 1, though the interpretation is
perhaps more difficult than for the extreme value δx = 1,
say. The width of the sections used in computing the en-
tropies was chosen to be δx = L/10.

In this discrete form, the entropy reads

S = −
k∑

i=1

ni

N
ln

ni

N
, (4)

where k = L/δx is the number of sections, ni the number
of burnt fuses in the i’th section, and N =

∑k
i=1 ni is

again the total number of fuses. Note that the absolute
value of S is dependent on the choice for δx. S can now be
used to consider different parts of the stress-strain curve,
separately, or the final damage pattern.
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Fig. 2. S vs. 1/(L log L) in networks with strong disorder
(R = 1). The straight line is a linear least squares fit that in-
tersects the S-axis at S = 0.9943.

Figure 2 shows the total entropy versus system size.
The best kind of linearity with respect to the data is ob-
tained with a scaling variable 1/(L logL). This can be
considered with the following Ansatz. Assume that the
fractures are distributed otherwise randomly (nb,i), except
the one containing the final crack, which has nb,k + ∆nb,k

where k is its section. Take ∆nb � 〈nb〉, which implies ap-
proximately S ≈ 1−lnk(∆nb,k/nb). Noticing the logarith-
mic scaling of damage, it follows that S ∼ −1/(L logL), if
and only if ∆nb,k scales as ∆nb,k ∼ L/(logL)2. We have
not checked explicitly that this holds; note that the frac-
ture surface, being self-affine, is thus supposed to contain
La fuses, with 1 < a � 2, but the fracture process zone
contains other damage (broken fuses) contributing to ∆nb

(see Fig. 1 again, and the last panel in particular). In any
case, it is obvious that the entropy increases with system
size, indicating more and more completely random dam-
age. The limiting value of S is slightly below unity; here it
is hard to say whether this difference is due to the choice
used for computing S or a real one [31].

In Figure 3 an example is shown of how the damage
actually localizes when the fracture process is divided into
sequential slices, i.e. by taking a fixed number of consecu-
tive fuse failures for each. It is clear that initially most of
the fuses break randomly, and only in the last one strong
localization takes place. Similar sampling can also be done
with the external voltage or current as control parame-
ters, the difference between these two being that the final
avalanches are different (the fracture is more abrupt in the
current-driven case and thus the final avalanche is larger).

This lack of the localization of damage is reflected
in Figures 4 and 5. The first one shows three examples
of the damage profiles ρ(x) where the average is simply
performed over the perpendicular direction for each sep-
arately. In Figure 5, the damage density 〈ρ〉(χ) is aver-
aged in the y-direction over the number of fuses that fail
at fixed position, as a function of the normalized coordi-
nate transform χ = (x − xc + L)/2L. Here the point xc

is chosen as the one with the maximum damage, and is
located in practice at the final fracture line, xc � h̄. No-
tice that it is imperative that xc is chosen to be inside the
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Fig. 3. Entropy S versus time interval ∆ni. L = 100, R = 1.
Average over 20 realizations.

sample-dependent crack zone. Using for instance a dam-
age center-of-mass for it would confuse the issue, since for
e.g. L = 100 most of the damage is located outside of this
zone, and the truly localized part of the density of bro-
ken fuses is not detected properly, using such a definition
(consider again Fig. 1.). This can be seen in Figure 4: the
background (of damage which fluctuates and is uncorre-
lated on the scale of the system, L) obscures the location
of the crack. Due to the diffuse nature of the crack and the
fact that ζ < 1 this becomes only worse with increasing L.

After this shift, the average density is computed tak-
ing care that it is normalized correctly since the number of
samples contributing for each χ varies with the final crack
location – xc is a random variable. We also have added
the average fracture line width w(L = 100) as a compar-
ison (from Ref. [16]). It can be seen that outside of the
immediate vicinity of the fracture process zone the dam-
age is constant. Notice the error bars of the data points,
and that the data points located far away from the crack
line suffer from the presence of less data points as seen
from the error bars. It would be interesting to analyze in
detail the functional shape of 〈ρ〉(χ) in the proximity of
the crackline, χ = 0.5. The implication of the results is
that the density can be written as a sum of a constant
(L-dependent) background, and a term that has to decay
(perhaps exponentially) within a finite lengthscale from
the crack. This decay length in turn may depend on L. In
reference [32] it has been pointed out that the best way to
address the averaging this to subtract first the data before
the peak stress and look thus only at the damage in the
post-maximum phase. Then, one can use the center-of-
mass -shift to superimpose the damage profiles. However,
the same authors also emphasized the absence of a cor-
related damage profile both before the current maximum,
and in the post-maximum case outside of the crack zone
itself. This agrees with the impression Figure 5 gives.

Such an observation is in contradiction to the proposed
“self-consistent” quadratic functional form, by Hansen

et al. [14]. This would imply 〈ρ〉(χ) = pf −A
(

L(2χ−1)
lx

)2

,
where pf is the maximum density; this is clearly not the
case. In the light of the picture discussed below about the
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Fig. 4. The damage density 〈ρ〉(x) along the current direc-
tion (averaged over the perpendicular direction) for three ran-
dom samples. One can see the rough locations of the final
cracks. Moreover, the plot also demonstrates the locations of
the center-of-masses of the three samples (circle: dotted case;
square: solid case; triangle: dashed one) Here L = 100, R = 1.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

2w

χ

〈ρ
〉(

χ)

Fig. 5. Averaged damage density 〈ρ〉(χ). L = 100, R = 1.

internal dynamics of microcracks or avalanches, the inter-
pretation is that the final crack is formed here similarly
to weak disorder in a “critical” manner. That is, once a
damage density sufficient for “nucleation” is established
the largest crack becomes unstable. Prior to that the cor-
relations in the damage accumulated can for all purposes
be neglected. This would in turn to imply that the origin
of the self-affine crack roughness in fuse networks is not
dependent on whether there is “strong” or “weak” disor-
der, as long as there are no infinitely strong fuses, or as
long as the process does not resemble e.g. percolation due
to the complete domination of zero-strength fuses.

3 Avalanches

Next we consider the correlations in the dynamics of indi-
vidual fuse failures. Recall that the MF-limit states that
consecutive ones should not be spatially correlated in any
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fashion; the opposite limit is given by the growth of a lin-
ear crack in which it is always the one adjacent to the
crack tip to fail next. In the case that the growing crack
is “rough” one expects that the subsequent failure takes
place inside a fracture process zone, analogously to normal
fracture mechanics, one of the follow-up questions being
how the size and the shape of this zone vary with system
size and as the crack grows [15]. The simplest quantities to
compute, to examine localization and spatial correlations
between fractures, are the 1d distances between consecu-
tive fractures,

∆x = |xi+1 − xi| (5)
∆y = |yi+1 − yi|, (6)

where xi and yi are the x- and y-coordinates of the
ith fracture. Another one choice is given by the average
distances between consecutive fractures belonging to the
same avalanche (i.e. induced by a single increment of the
control parameter)

∆xavalanche =
1

∆ − 1

∆−1∑

i=1

|xi+1 − xi| (7)

∆yavalanche =
1

∆ − 1

∆−1∑

i=1

|yi+1 − yi|. (8)

Here ∆ is the avalanche size, in fuses failed. The
MF (FBM or random -like damage) theory predicts
P (∆x = k) = 2(L − k)/L2 and P (∆y = k) = 2/L, if the
boundary conditions used here are taken into account, and
∆ is again the avalanche size measured in the number of
fuses broken during it. For clarity note that we are here
assuming “democratic load sharing”: the positions would
be located randomly.

Figure 6 depicts, as a comparison for the mean-field
results, the average distances in the x- and y-dimensions
between consecutive broken fuses belonging to the same
avalanche. 〈∆xavalanche〉 and 〈∆yavalanche〉, are shown,
respectively, as a function of the system size. Both are
linear like in the MF theory, but with a smaller slope
with L. This means, that the damage created by a typical
avalanche (microcrack creation, crack advance etc.) is lo-
calized compared to the MF-prediction, but nevertheless
the localization does not get stronger with L. One should
note that the damage as such is almost volume-like. The
result is thus not surprising in the sense that a reduction
of the slope (sublinear behavior, say, 〈∆xavalanche〉 ∼ Lα,
with α < 1) would imply concomitant faster average crack
growth, which would be in contradiction with the damage
scaling.

To understand the dynamics of microcracks in detail
is a difficult task. This is since the growth dynamics is not
local: the burned fuses do not have to form connected clus-
ters by any remotely easy criterion. It is easy to compre-
hend that the driving force for the localization is standard
stress-enhancement, but as is true for RFN’s crack shield-
ing and arrest (due to strong fuses, in the early stages of
fracture) play a role. One may set aside for the sake of dis-
cussion the separation of the events into avalanches, and
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just consider the distances between consecutive burned
fuses. Figure 7 demonstrates the difference between two
probability distributions P (∆x), averaged over the first
1/8 of the typical failure process and the last, respectively,
for a fixed L. As one could expect, there is a peak in the
distribution (this holds for both x- and y-directions sepa-
rately), which is greatly suppressed in the first part closest
to the MF-limit.

Thus one may conclude that there is a continuous
cross-over from purely MF-like behavior to a complicated
non-local growth dynamics. This is also exhibited by such
distributions P (∆x), P (∆y). The analysis of the detailed
shape of the small-argument part of the probability distri-
butions would be an interesting challenge. To first order,
the result is a convolution of a microcrack size distribution
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and the corresponding stress enhancement factor, such
that the distribution P evolves or grows according to the
underlying probability distribution of crack sizes and lo-
cations. Given the simple forms of say P (∆x) for small
arguments there might be some hope for developing ana-
lytical arguments.

When considered as a function of L it becomes imme-
diately apparent why the avalanche statistics resembles
the MF-case so much. This is due to two separate factors:
first, the growth is clearly in the sample case of Figure 7
(or Fig. 1 again) local over a certain lengthscale (damage
correlation length), ξx or ξy. Second, one should recall the
scaling of the strength with L: catastrophic crack growth
takes place earlier and earlier with respect to the intensive
variable, current. This means that the RFN’s resemble, in
the thermodynamic limit, more and more the mean-field-
case in their fracture properties in spite of the stress- (or
more exactly current-) enhancements that the model con-
tains.

Again, our data does not allow us to conclude firmly
how such correlation lengths behave for small ∆x or ∆y -
how the associated distributions P would scale for small
arguments that is. This is due to the limited scaling range
of P (at least for the given disorder, but of course ξy � L
as well). One may however simply use an Ansatz that
P ∼ ∆y−τ upto ξy, say and MF-like for larger ∆y [30].
This defines the correlation length ξy for a given damage
density ρ. Using now such a distribution P allows to com-
pute 〈∆y〉 and relate it to ξy. This approach is valid for
fracture processes that deviate from uncorrelated ones for
scales such that ξy � 〈L/4〉. The result is in analogy to
Delaplace et al. [30] that for a given damage level,

〈∆y〉 =
1 − τ

4(2 − τ)
(2 − τ)L2 + 8τξ2

y

(1 − τ)L + 2τξy
. (9)

This defines implicitely ξy, with the aid of 〈∆y〉. In the op-
posite limit, ξy ∼ 1 the correlations are badly defined since
the model discretization comes into play. Figure 8 shows
an example of the ensuing scaling with different guesses
for τ , for L = 100. The main observation is an exponen-
tial (perhaps) increase of ξy with damage. Again, note
that with still larger system sizes the total damage is di-
minished, which in turn implies that the maximal correla-
tions in the damage accumulation become weaker. Please
observe that we have not studied in detail the other possi-
bility, ξx since the main interest lies with the correlations
in the crack-growth direction.

4 Summary

In this article we have studied the distributions and devel-
opment of damage in random fuse networks, with “strong”
disorder. Our aim has been to understand possible devia-
tions from mean-field theory, and the associated correla-
tions. This is of relevance both as regards the statistical
mechanics of fracture in general, and in particular also
the growth and formation of self-affine cracks. In other
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Fig. 8. The scaling of ξy (see Eq. (9)) with increasing dam-
age for L = 100. The total number of broken bonds has been
divided into ten consecutive windows, and in each of these
〈∆y〉 has been computed, and ξy using equation (9). For τ two
guesses (1/2, 2/3) are used, note that 0 < τ < 1.

words, we have concentrated on the “approach to the crit-
ical point” if the failure transition is considered as an ana-
logue of ordinary phase transitions.

An analysis of the localization of damage both during
the fracture process and a posteriori reveals that in the
case studied the correlations are very weak, are formed
mostly in the last catastrophic phase of network failure,
after the maximum current Imax, and do not have any
global correlations. The localization is centered in and
around the final crack surface, or what may be called
as the total volume encompassed by a “fracture process
zone”. We would like to note that this is in contrast to
the recent theory of self-organized damage percolation, of
Hansen et al. ([25]) devised to explain the formation of
self-affine cracks in fuse networks, and in related experi-
ments. In particular it should be stressed that there is no
evidence of a global, non-trivial damage profile as implied
by that proposition – the only localization can be found in
the immediate vicinity of the crack. Recent numerical re-
sults of Nukala et al. [32] with much better statistics than
what is the case here or with the works of other, earlier
authors, also imply the same.

Since also in this particular case much of the dam-
age incorporated in the final crack is due to the “last”
avalanche it seems then logical that the fracture surface
geometry is formed similarly to RFN’s with weak disorder,
for which there is no quasi-volume like damage, and one
often has just the propagation, and formation of the final
crack. In spite of this difference in the amount of damage,
the measured roughness exponents from such simulations
are close; this seems to imply that it is the correlated
growth in the final, unstable crack formation that gives
rise to the self-affine properties.

The internal correlations of the avalanches become
more and more important as damage grows, but in line
with the fact that the statistics is close to the mean-field
case the growth is never very far from the MF-case: for all
phases studied there are subsequent remote broken fuses,
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so that there is no complete localization, even very close
to the last growth event. There is an associated localiza-
tion engthscale that can be roughly defined based on the
x- and y-dependent results, but of course one could go fur-
ther and look at the radial probability distribution P (
r),
with 
r = (xi+1, yi+1) − (xi, yi) (for which one would pre-
sumably need still much larger systems to get decent aver-
aging). One central lesson is that localization will dimin-
ish with system size due to the normal volume effect of
strength, decreasing with L. In this respect, fuse networks
are not unique, and other simulation models of brittle frac-
ture should exhibit the same behavior. To conclude, even
in our case with quite strong disorder the failure process
consists of weakly correlated damage growth and a final
catastrophic crack propagation phase, that induces a first-
order drop in the elastic modulus.

We are grateful to the Center of Excellence program of the
Academy of Finland for support.
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